Malliavin Calculus for Markov Chains using Perturbations of Time

نویسندگان

  • Laurent Denis
  • Tuyet Mai Nguyen
چکیده

In this article, we develop a Malliavin calculus associated to a timecontinuous Markov chain with finite state space. We apply it to get a criterion of density for solutions of SDE involving the Markov chain and also to compute greeks. keywords: Dirichlet form; Integration by parts formula; Malliavin calculus; Markov chain; computation of greeks. Mathematics subject classification: 60H07; 60J10; 60G55; 91B70.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

OnWeak Convergence, Malliavin Calculus and Kolmogorov Equations in Infinite Dimensions

This thesis is focused around weak convergence analysis of approximations of stochastic evolution equations in Hilbert space. This is a class of problems, which is sufficiently challenging to motivate new theoretical developments in stochastic analysis. The first paper of the thesis further develops a known approach to weak convergence based on techniques from the Markov theory for the stochast...

متن کامل

Optimal portfolio policies under bounded expected loss and partial information

In a market with partial information we consider the optimal selection of portfolios for utility maximizing investors under joint budget and shortfall risk constraints. The shortfall risk is measured in terms of expected loss. Stock returns satisfy a stochastic differential equation. Under general conditions on the corresponding drift process we provide the optimal trading strategy using Mallia...

متن کامل

Linear Stochastic Differential Equations with Boundary Conditions

We study linear stochastic differential equations with affine boundary conditions. The equation is linear in the sense that both the drift and the diffusion coefficient are affine functions of the solution. The solution is not adapted to the driving Brownian motion, and we use the extended stochastic calculus of Nualar t and Pardoux [16] to analyse them. We give analytical necessary and suffici...

متن کامل

On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility

In this paper we use Malliavin calculus techniques to obtain an expression for the short-time behavior of the at-the-money implied volatility skew for a generalization of the Bates model, where the volatility does not need to be a diffusion or a Markov process, as the examples in Sect. 7 show. This expression depends on the derivative of the volatility in the sense of Malliavin calculus.

متن کامل

Optimal Portfolio Policies under Bounded Expected Loss and Partial Information Optimal Portfolio Policies under Bounded Expected Loss and Partial Information *

In a market with partial information we consider the optimal selection of portfolios for utility maximizing investors under joint budget and shortfall risk constraints. The shortfall risk is measured in terms of expected loss. Stock returns satisfy a stochastic differential equation. Under general conditions on the corresponding drift process we provide the optimal trading strategy using Mallia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015